Gambar2. Konsep kemiringan garis singgung Misalkan P adalah sebuah titik tetap pada Q adalah sebuah titik berdekatan yang dapat dipindah-pindahkan pada kurva tersebut. P adalah (c, f( )), titik Q mempunyai koordinat (c + h, f(c + h)). Tali muncul dalam persamaan garis singgung. Misalkan garis g: y = m 1 x + c 1 sejajar garis h: y = m 2 x
KomputasiNumeris: Analisis Regresi Sederhana Polinomial. Pendahuluan. Pada bagian sebelumnya, kita telah mempelajari analisis regresi non linear Power dan Eksponential. Kita juga telah tahu cara mudah mendapatkan persamaan regresi ( kurva fitting) menggunakan software MS Excel. Saat ini kita akan membahas analisis regresi non linear Polinomial.
Sistempersamaan linier disebut juga dengan sisitem persamaan garis . Dan pada pembahasan sebelumnya , telah kita pelajari rumus sistem persamaan garis lurus , jadi pasti kita masih ingat dong bagaimana gambaran tentang bentuk persamaan . metode - metode tersebut adalah : a. Metode Substitusi. b. Metode Eliminasi. c. Metode Campuran
Tabletjenis I mengandung 5 unit vitamin A dan 3 unit vitamin B. Tablet jenis II mengandung 10 unit vitamin A dan 1 unit vitamin B. Dalam 1 hari anak tersebut memerlukan 25 unit vitamin A dan 5 unit vitamin B. Jika harga tablet I Rp 4.000,00 per biji dan tablet II Rp 8.000,00 per biji, pengeluaran minimum untuk pembelian tablet per hari adalah
Sehinggapersamaan garis singgung yang melalui titik (x 1, y 1) = (2, 4) pada lingkaran tersebut adalah Sehingga, persamaan garis singgung lingkaran tersebut adalah 6x - y - 8 = 0. Selanjutnya bagaimana kalau persamaan lingkarannya tidak ditulis ke dalam bentuk (x - a) 2 + (y - b) 2 = r 2, tetapi ke dalam bentuk persamaan umum lingkaran
PERSAMAANGARIS LURUS. Persamaan parametrik adalah metode mendefinisikan hubungan menggunakan parameter, misalnya marameter t dimana t adalah skalar. Pada gambar di bawah ini adalah garis yang melalui titik P0(x0,y0,z0) dan sejajar dengan vektor v = ai + bj + ck. Untuk menentukan persamaan garis l, diambil sembarang titik P (x,y,z) pada.
YC6Ek2. Persamaan parametrik adalah persamaan yang mendefinisikan hubungan dua variabel, misalkan \x\ dan \y\, dengan cara menggunakan dua persamaan dari dua variabel tersebut di mana masing-masing persamaan dinyatakan dalam suatu variabel. Variabel tersebut dinamakan parameter. Bingung ya? Mari saya ulangi dalam kalimat sederhana apa itu persamaan parametrik. Persamaan parametrik adalah persamaan yang menyatakan hubungan variabel \x\ dan \y\ dituliskan dengan\[\begin{eqnarray}x&=&ft\\y&=>\end{eqnarray}\]dengan \a \leq t \leq b\. Perhatikan dua persamaan berikut\[x=2t\qquad ; y=t-4\]Persamaan di atas dinamakan persamaan parametrik dari \x\ dan \y\ dengan parameter \t\. Jika nilai \t\ disubtitusikan, maka nilai ini akan menentukan nilai \x\ dan \y\ yang merupakan koordinat dari kedudukan titik titik \Px,y\. Terus bagaimana menyatakan persamaan parametrik ke persamaan di koordinat salib sumbu atau koordinat kartesius? Cara yang lazim untuk merubah persamaan parametrik ke persamaan persegi panjang koordinat kartesius adalah dengan mengeliminasi parameter. Pada persamaan parameter di atas, jika anda subtitusikan nilai \t=\frac{x}{2}\ ke persamaan kedua akan diperoleh\[ \begin{eqnarray} y&=&\frac{x}{2}-4\\ 2y&=&x-8\\ x-2y&=&8 \end{eqnarray} \]yang merupakan persamaan derajat satu atau persamaan garis. Sedangkan kalau merubah suatu persamaan ke persamaan parametrik. Lihat contoh berikut Contoh Soal 1 Persamaan parabola yang didefinisikan dengan\[x^{2}+2x+y=4\]Tentukan persamaan parametrik dari persamaan tersebut! Penyelesaian contoh soal 1 Misalkan \x=2t\. Maka jika disubtitusi pada persamaan parabola di atas didapatkan\[ \begin{eqnarray} \left2t\right^{2}+22t+y&=&4\\ 4t^{4}+4t+y&=&4\\ y&=&4-4t-4t^{2} \end{eqnarray}\]Jadi persamaan parametrik dari parabola di atas adalah\[x=2t,\qquad y=4-4t-4t^{2}\] Pada contoh 1 di atas, persamaan parametrik tentu tidak haya satu saja, bisa banyak. Hal ini karena permisalan variabel \x\ bisa sebarang fungsi dalam \t\. Bisa \x=t\ bisa \x=t+1\ ataupun yang lain. Berikut akan dilihat beberapa persamaan parametrik dari kurva yang terkenal. Persamaan Parametrik Lingkaran Persamaan parametrik dari suatu lingkaran dengan jari-jari \r\ dan berpusat di titik asal \O\ dapat dikontruksi dari gambar berikut Perhatikan kedudukan titik \Px,y\ pada lingkaran yang dapat dinyatakan dalam bentuk dua persamaan dengan parameter sudut \\theta\. Berdasarkan definisi fungsi trigonometri, fungsi sinus dan kosinus, dapat dilihat bahwa\[\cos \theta=\frac{x}{r}\]atau\[x=r\cos\theta\]dan\[\sin \theta = \frac{y}{r}\]atau\[y=r \sin \theta\]Jadi persamaan parametrik dari lingkaran dengan jari-jari \r\ berpusat di \O0,0\ dengan parameter \\theta\ adalah\[ \begin{eqnarray} x&=&r\cos \theta\\ y&=&r \sin \theta \end{eqnarray}\]Jika nilai \\theta\ naik dari \0^{0}\ sampai \360^{0}\ maka titik \Px,y\ bergerak dari titik \Pr,0\ melingkar dengan arah berlawanan arah jarum jam sepanjang lingkaran. Untuk merubah persamaan parametrik ini, akan kita eliminasi parameter \\theta\. Dengan mengkuadratkan kedua ruas pada kedua persamaan dan dijumlahkan maka didapatkan\[ \begin{eqnarray} x^{2}+y^{2}&=&r^{2}\cos^{2}\theta+r^{2}\sin^{2}\theta\\ &=&r^{2}\left\cos^{2}\theta+\sin^{2}\theta\right\\ x^{2}+y^{2}&=&r^{2} \end{eqnarray}\]yang merupakan persamaan lingkaran dengan jari-jari \r\ dan berpusat di titik asal. Persamaan Parametrik Ellips Sekarang akan kita bentuk persamaan parametrik untuk ellips dengan pusat di titik asal \O0,0\ dengan sumbu mayor di sumbu \x\ dan sumbu minor terletak di sumbu \y\. Perhatikan gambar di bawah ini Akan dicari tempat kedudukan titik \Px,y\ yang bergerak sepanjang lintasan berbentuk ellips. Berdasarkan gambar dapat disimpulkan bahwa\[ \begin{eqnarray} x&=&OM=OA \cos \theta = a \cos \theta\\ y&=&MP=NB=OB \sin \theta=b \sin \theta \end{eqnarray} \]Titik \Px,y\ akan bergerak dimulai dari \a,0\ dan melewati lintasan ellips berlawanan arah jarum seiring nilai \\theta\ bertambah dari \0^{0}\ sampai ke \360^{0}\. Oleh karena itu persamaan parametrik dari ellips dengan pusat di titik asal adalah\[x=a\cos \theta;\qquad y=b\sin\theta\]Jika parameter \\theta\ dieliminasi maka dapat dilihat bahwa\[ \begin{eqnarray} x^{2}&=&a^{2}\cos^{2}\theta\\ \frac{x^{2}}{a^{2}}&=&\cos^{2}\theta\\ y^{2}&=&b^{2}\sin^{2}\theta\\ \frac{y^{2}}{b^{2}}&=&\sin^{2}\theta \end{eqnarray} \]sehingga\[\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1\]yang merupakan persamaan ellips. Grafik Persamaan Parametrik Seperti halnya menggambar suatu persamaan, persamaan parametrik dapat digambarkan dengan mencacah nilai dari variabel \x\ dan variabel \y\. Tentu, nilai dari dua variabel tersebut diperoleh dengan mensubtitusikan beberapa nilai dari parameternya dahulu. Cara alternatif menggambar persamaan parametrik yaitu dengan menghilangkan parameter dan dapat diketahui persamaan tersebut dalam bidang kartesius Perhatikan ilustrasi di dalam contoh berikut Contoh Soal 2 Gambar sketsa dari grafik\[x=5t-t^{2};\quad y=4t-t^{2}\]Penyelesaian Contoh Soal 2 Tabel di bawah menunjukkan nilai dari variabel \x\ dan \y\ untuk suatu nilai \t\ \\boldsymbol{t}\ \\boldsymbol{x}\ \\boldsymbol{y}\ \-\frac{3}{2}\ \-\frac{39}{4}\ \-\frac{33}{4}\ \-1\ \-6\ \-5\ \-\frac{1}{2}\ \-\frac{11}{4}\ \-\frac{9}{4}\ \-0\ \-0\ \-0\ \\frac{1}{2}\ \\frac{9}{4}\ \\frac{7}{4}\ \1\ \4\ \3\ \\frac{3}{2}\ \\frac{21}{4}\ \\frac{15}{4}\ Data pada tabel di atas selanjutnya dibuat di bidang kartesius dan digambarkan sketsanya. Jika ingin mengeliminasi parameter, langkah pertama adalah dengan mengurangkan kedua persamaan\[\begin{eqnarray}x-y&=&5t-t^{2} - 4t-t^{2}\\x-y&=&t\end{eqnarray}\]Selanjutnya mensubtitusi nilai \t\ tersebut ke salah satu persamaan semula\[\begin{eqnarray}x&=&5x-y-x-y^{2}\\&=&5x-5y-x^{2}+2xy-y^{2}\\0&=&x^{2}-2xy+y^{2}-4x+5y\end{eqnarray}\]yang merupakan persamaan dari parabola. Contoh Soal 3 Konstruksi grafik dari persamaan parametrik berikut\[x=2\sin^{2}\theta,\quad y=2 \cos^{2}\theta\]Penyelesaian Contoh Soal 3 Menkontruksi grafik dari persamaan tersebut lebih mudah dengan mengelimasi parameter. Jika kedua persamaan dijumlahkan maka didapatkan\[\begin{eqnarray}x+y&=&2 \sin^{2}\theta+2\cos^{2}\theta\\&=&2 \sin^{2}\theta+\cos^{2}\theta\\x+y&=&2\end{eqnarray}\]yang meruapkan persamaan garis lurus Cycloid Pernahkan anda melihat benda bulat menggelinding. Pasti pernah. Roda ban yang menggelinding salah satu contoh yang kerap terlihat. Ada apa dengan ban menggelinding? Coba lihat animasi berikut Garis merah merupakan lintasan yang diperoleh dari suatu titik pentil jika dalam kasus roda ban berputar pada keliling lingkaran yang menggelinding. Bagaimana mendapatkan persamaan dari cycloid tersebut? Pertama adalah dengan memilih garis sebagai sumbu-\x\ dan titik asal sebagai titik sentuh lintasan dengan sumbu \x\. Pada gambar di atas, jari-jari lingkaran yang menggelinding dalah \a\ dan titik \Px,y\ sebagai titik penulusur. Pada posisi di atas, \CP\ membentuk sudut \\theta\ dengan garis vertikal. Jika lingkaran menggelinding maka diperoleh panjang \OB\ dan \PB\. Jadi\[OB = arc PB = a\theta\]Perhatikan segitiga \\triangle PDC\ \[\begin{eqnarray}x&=&OA=OB-PD=a\theta - a \sin \theta\\y&=&AP=BC-DC=a - a\cos\theta\end{eqnarray}\]Oleh karena itu, persamaan parametrik dari cycloid adalah\[\boldsymbol{x=a\theta - \sin \theta;\quad y=a1 - \cos\theta}\] Persamaan Parametrik Oleh Mohammad Mahfuzh Shiddiq December 03, 2019
Kelas 9 SMPFUNGSI KUADRATFungsi kuadrat dengan tabel, grafik, dan persamaanPerhatikan gambar berikut Persamaan garis a pada gambar tersebut adalah... A. 3x + 2y = -4 B. 3x - 2y = 4 C. 3x - 2y = 3 D. 2x + 3y = 3 E. 2x - 3y = 5Fungsi kuadrat dengan tabel, grafik, dan persamaanFUNGSI KUADRATALJABARMatematikaRekomendasi video solusi lainnya0353Diketahui garis dengan persamaan x + 4y + 3 = 0 dan 2x - ...0146Perhatikan grafik fungsi kuadrat fx = ax^2 + bx + c ber...0349Grafik fungsi kuadrat yang memotong sumbu X di titik -4,...0648Lukiskan grafik fungsi kuadrat fx=x^2+6x+5, untuk domai...Teks videoJika kita melihat soal seperti ini kita harus tahu terlebih dahulu rumus untuk menentukan persamaan garis jika suatu garis itu melalui satu titik dan tegak lurus atau sejajar garis lain yaitu y dikurangi dengan y 1 = M dikali dengan X dikurang Y dengan x 1 rumus ini selalu kita gunakan y untuk menentukan persamaan garis dengan kondisi tersebut. Oke di sini yang dicari adalah persamaan garis a di mana A garis a ini melewati titik 3 koma 3 dan tegak lurus dengan garis lain misalkan Saya beri nama garis ini adalah garis B Oke garis B ini melalui sumbu y di titik 0,2 sedangkan melalui sumbu x di titik 3,0 maka kita bisa cari tahu nilai dari gradien garis B di ini Kenapa kita harus cari tahu gradien garis B karena mengetahui gradien garis B kita bisa atau gradien garis a untuk kemudian kita masukkan ke dalam rumahnya ada di Ok gradien garis B bisa kita perlu dengan cara Y 2 dikurang dengan 1 per X2 dikurangiX1 secara umum rumus ini digunakan untuk menentukan gradien dari suatu garis jika diketahui dua titik dengan catatan titik-titik ini berada di garis B yaitu melewati garis peta dia koma dua dan 3,0 misalkan yang 0,2 saya ibaratkan sebagai x1 y1 dan 3,0 adalah x 2 Y 2 maka gradiennya adalah 0 dikurangi 2 per 3 dikurangi 0 hasilnya adalah min 2 per 3 perlu kita ketahui bahwa di sini gradien garis a dan garis B tegak lurus ya maka gradien garis B dengan gradien garis a itu nilainya negatif 1 atau artinya sebenarnya gradien garis B dan gradien garis a itu saling berkebalikan dan berlawanan karena nilai dari gradien garis B ini adalah min 2 per 3 maka gradien dari garis a adalah 3 per 2 kebalikan dan lawannya gradien garis ini kita masukkan ke persamaannya tadi y dikurangSatu karena titik a titik garis a garis a ini melewati titik 3 koma 3 maka y satunya adalah 3 = 3 per 2 X dikurang x 1 yaitu 3. Nah ini ini ya saya kalikan 2 ya biar pecahan di sini hilang berarti 2 y min 6 sama dengan 3 kali x min 3 tinggal dikalikan saya 2y min 6 = 3 x min 93 X Saya pindah ke ruas kiri ya berarti 2 y min 3 x = min 6 Jika saya pindah ke kanan berarti Min 9 ditambah dengan 6 2y min 3 x = min 3 Nah karena di opsi disini adalah variabel x bernilai positif saya X negatif 1 semua ya Negeri 1 berarti di sini dapat 3 X min 2 y = 3 Nah jadi persamaan garis a di sini adalah 3min 2 y = 3 ada 2 PSI C sampai jumpa di soal selanjutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
persamaan garis pada gambar tersebut adalah